Spectral Decomposition and Invariant Manifolds for Some Functional Partial Differential Equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Invariant Manifolds for Stochastic Partial Differential Equations
Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...
متن کاملInvariant manifolds for random and stochastic partial differential equations
Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. Under a nonuniform hyperbolicity or a nonuniform exponential dichotomy condition, the existence of random pseudostable and pseudo-unstable manifolds for a class of random partial differential equations and stochastic partial differential equations is shown. Unlike the invarian...
متن کاملPeriodic Solutions for Some Partial Functional Differential Equations
We study the existence of a periodic solution for some partial functional differential equations. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida condition. In the nonhomogeneous linear case, we prove the existence of a periodic solution under the existence of a bounded solution. In the nonlinear case, using a fixed-point theorem concerning set-valued maps, w...
متن کاملPeriodic Solutions for Some Partial Neutral Functional Differential Equations
In this work, we study the existence of periodic solutions for partial neutral functional differential equation. We assume that the linear part is not necessarily densely defined and satisfies the Hille-Yosida condition. In the nonhomogeneous linear case, we prove that the existence of a bounded solution on R+ implies the existence of a periodic solution. In nonlinear case, we use the concept o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1997
ISSN: 0022-0396
DOI: 10.1006/jdeq.1997.3277